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Abstract—A micromechanics-based framework is presented to predict effective elastoplastic
behavior of two-phase particle-reinforced ductile matrix composites (PRDMCs) containing many
randomly dispersed elastic spherical inhomogeneities. Specifically, the inclusion phase (particle) is
assumed to be elastic and the matrix phase is elastoplastic. A complete second-order formulation is
presented based on the probabilistic spatial distribution of spherical particles, pairwise particle
interactions and the ensemble-volume averaging procedure. Two non-equivalent formulations are
considered in detail to derive the effective yield functions. In addition, the plastic flow rule and
hardening law are postulated according to continuum plasticity and, together with the mic-
romechanically derived effective yield function, are employed to characterize the plastic behavior of
PRDMCs under three-dimensional arbitrary loading/unloading histories. Initial effective yield cri-
teria for incompressible ductile matrix containing many randomly dispersed spherical voids are also
studied. Furthermore, uniaxial elastoplastic stress-strain behavior of PRDMCs is investigated.
Comparison between our theoretical uniaxial stress—strain predictions and experimental data for
PRDMCs is also performed to illustrate the capability of the proposed framework. Copyright
© 1996 Elsevier Science Ltd.

1. INTRODUCTION

When ductile matrices are reinforced by elastic inclusions of high strength and high moduli,
they lead to greater strength in shear and compression. Reinforcements could be continuous
in the form of fibers or discontinuous in the form of particles or whiskers. Although
continuous fiber-reinforced ductile matrix composites offer highly directional properties
such as high specific stiffness along the reinforcement direction, particle-reinforced ductile
matrix composites (PRDMCs) are widely used as they can exhibit nearly isotropic proper-
ties (if randomly oriented) and are often easier to process. See Ibrahim er al. (1991) for a
general review of particle reinforced metal matrix composites.

The main objective of this paper is to predict effective elastoplastic behavior of two-
phase particle reinforced ductile matrix composites based on mechanical properties of
constituent phases, volume fractions, random spatial distributions and micro-geometries
of particles. Furthermore, the particles are assumed to be elastic spheres (randomly dis-
persed in the matrix) and the ductile matrix behaves elastoplastically under arbitrary loading
histories. All particles are assumed to be non-intersecting and embedded firmly in the
matrix with perfect interfaces. Composites consisting of a metallic matrix reinforced by
particles are examples of PRDMCs. The reinforcing particles, for example, could be
carbides, nitrides, oxides, elemental materials, and so on. Existing studies on this subject
have been primarily the “effective medium methods” such as the self-consistent method
(e.g., Hutchinson (1970, 1976)) and the Mori-Tanaka method (e.g., Tandon and Weng
(1988), Weng (1990), Li and Chen (1990), Lagoudas et al. (1991), and Bhattacharyya et
al. (1993)). In addition, Suquet (1993) proposed mathematical bounds for metal matrix
composites corresponding to some special cases such as power law or rigid-perfectly plastic
materials. Most recently, Ju and Chen (1994a) proposed a micromechanical framework to
predict the effective elastoplastic behavior of two-phase metal matrix random composites
under arbitrary loading histories by considering the first-order (noninteracting) stress per-
turbations of elastic particles on the ductile matrix and the second-order relationship
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between the far-field stress ¢° and the ensemble-volume averaged stress & (based on the
work of Ju and Chen (1994b, ¢)).

In the self-consistent method, effects of particle interactions are approximated by
embedding a single particle in an infinite “effective medium”. Such an analysis, as pointed
out by Tandon and Weng (1988), may lead to a significant overestimate of the overall yield
strength of a PRDMC. On the other hand, within the Mori-Tanaka method, effects of
particle interactions are taken into account by a “‘mean-field approximation”. However,
elastic properties of composites predicted by any effective medium methods are only depen-
dent on geometries (i.e., shapes, orientations and volume fractions) of particles, and are
independent of their spatial locations and distributions. Therefore, rigorously speaking,
effective medium methods are more suitable for dilute or low concentrations of inclusions
in which spatial locations and inter-particle interactions are not important.

According to the plasticity theory, the response at every /ocal matrix point depends on
its own spatial location and loading history. In order to obtain the deterministic overall
behavior of a PRDMC, plastic field quantities (such as plastic strains and plastic hardening
variables) must be recorded for every local point during the entire arbitrary loading history
for any given particle configuration. Furthermore, hundreds of Monte Carlo simulations
need to be performed to obtain the overall elastoplastic behavior of a random (not periodic)
particle reinforced ductile matrix composite. This approach is precluded due to the com-
plexity of random microstructures as well as the lack of exact microstructural information
under normal situation. Therefore, statistical averaging methods have to be employed at the
micromechanical level. Instead of exact deterministic solutions, a statistically representative
(ensemble-volume averaged) effective elastoplastic formulation is pursued in the present
study. The “local stress norm” needed in the matrix plasticity formulation is calculated
analytically by a micromechanical approach which considers complete second-order pair-
wise inter-particle interactions. This is at variance with Ju and Chen’s (1994a) formulation
in which only the first-order (noninteracting) stress perturbations on the matrix points due
to elastic particles are considered. Probabilistic ensemble average is subsequently applied
in this paper to obtain a homogenized ‘““plastic loading function”. The plastic flow rule and
hardening law are then postulated at the composite level based on continuum plasticity.
Hence, complete second-order macroscopic effective elastoplastic constitutive models are
established for PRDMCs.

For the special problem of an incompressible ductile matrix containing many randomly
dispersed spherical voids, the effective yield criterion micromechanically derived in this
paper is shown to predict a finite initial yield stress for the von Mises type (J,) plasticity
under purely deviatoric loadings. This demonstrates that the proposed approach is capable
of, in an average sense, capturing the local stress perturbations due to the presence of and
interactions among spherical voids. Moreover, when the interactions among voids are
completely neglected, the effective initial yield stresses predicted by our method are identical
to the upper bounds of Ponte Castaneda (1991) and the results of the energy method
proposed by Qiu and Weng (1993).

In this study, the micromechanical approach of inter-particle interactions is combined
with the continuum plasticity (von Mises model) to predict the effective elastoplastic
behavior of a ductile matrix containing many randomly dispersed elastic spherical particles.
Inter-particle interactions are considered for otk the elastic and plastic sub-problems. A
complete second-order formulation is proposed based on the pairwise particle interactions
and the ensemble-volume averaging (homogenization) to construct the macroscopic (over-
all) yield functions for two-phase PRDMCs.

This paper is organized as follows. In Section 2, effective elastic moduli of two-phase
composites containing randomly dispersed spherical particles are summarized based on Ju
and Chen (1994b, ¢). In particular, relations between the stress/strain concentration factor
tensors and effective elastic moduli are established. A second-order formulation is presented
in Section 3 to account for particle interaction effects. Two non-equivalent formulations to
derive the overall yield functions are considered in detail. In addition, the plastic flow rule
and hardening law are postulated according to continuum plasticity to characterize the
plastic behavior under arbitrary three-dimensional loading and unloading histories (in
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contrast to monotonic and proportional loadings assumed by most existing works in the
micromechanics literature). Initial effective yield criteria for incompressible ductile matrix
containing many identical spherical voids are presented in Section 4. The proposed non-
interacting ( first-order) and interacting (second-order) effective initial yield functions are
compared with those proposed by Gurson (1977), Tvergaard (1981), Ponte Castaneda
(1991), and Qiu and Weng (1993). Furthermore, uniaxial elastoplastic stress—strain
behavior of PRDMCs is studied in Section 5. Our model predictions are compared with
experimental data by Yang ez al. (1991). In a forthcoming paper, three-dimensional com-
putational return mapping algorithms, finite element implementations and effective elasto-
viscoplastic (rate-dependent) behavior of PRDMCs will be presented.

2. EFFECTIVE ELASTIC MODULI OF TWO-PHASE COMPOSITES CONTAINING
RANDOMLY DISPERSED SPHERICAL PARTICLES

Let us start by considering a composite consisting of an elastic matrix (phase 0) and
randomly dispersed elastic spherical particles (phase 1) with distinct material properties.
The two phases are perfectly bonded at interfaces. The relation between the stress o and
strain ¢ at any point x in the a-phase (« = 0 or 1) are governed by

a(x) = C,:e(x); &(x) =D,:0(x) (1)

where : denotes the tensor contraction, and C, and D, are the elastic stiffness and compliance
tensors, respectively.

2.1. Relations between concentration factor tensors and macroscopic moduli
By taking the volume average (denoted by an overbar) of eqn (1) over the sub-domain
occupied by the a-phase, we obtained

6-1=C1:51; §a=D1:a—'a¢ (2>

At the macroscopic level, overall elastic stiffness C,, and compliance D, moduli are defined
as the relations between global averages of stress and strain:

6=C,:8;, §=D,:é 3)

Ideally, if the stress and strain fields of a composite can be solved deterministically,
the local stress and strain for the a-phase would be related to the global averages as follows

o(x) = B,(x):6; &(x) = A,(x):& )

in which A,(x) and B,(x) are the Jocal strain and stress concentration factor tensors,
respectively, for the a-phase. It is apparent that exact solutions would only be possible if
detailed microstructural information, such as the locations and configurations of particles,
and exact solutions of many-particle interaction problems are available. In practical situ-
ations, it is often not possible to obtain this microstructural information. Furthermore,
exact solutions of many-particle interaction problems are intractable. However, averaging
eqn (4) over the z-phase provides a tractable avenue based on the volume-averaged quan-
tities rather than the actual local solutions.
Following Hill (1963) and Dvorak (1991), we write

6,=B,:6., &, =A,E (5)

where A, and B, are the volume-averaged strain and stress concentration factor tensors,
respectively, for the a-phase. The relations between concentration factors for the two phases
are obtained by using eqn (5) and the volume-averaging procedure :
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doBo+d B, =1; PoAg+ A =1 (6)

where 1 is the fourth rank identity tensor and ¢, denotes the a-phase volume fraction.
Moreover, substituting eqn (2) into (6) and using (3) yields

6=0,Co:5+¢,C 8 ; &€= ¢;Dy:6,+¢ D, 6, @
and hence
Ci=0Co-Ag+¢,Ci-Ay; Dy =¢DyBy+¢,D, "B, (8)
Therefore, macroscopic elastic moduli are expressed in terms of volume fractions, phase
moduli, and concentration factor tensors of both phases. Alternatively, employing eqn (6),
one can write (a # ) :
Cy =C,+95(Cs—C,)Ag; Dy =D, +¢4(D;—D,) By )
Simple manipulations then lead to the following relations:
Ba'C*:Ca.Aa; Aa.D*ZDa'Ba (10)
2.2. Inter-particle interactions and ensemble-volume averaged fields
In Ju and Chen (1994¢), it was shown that the approximate ensemble-volume averaged

eigenstrain {&*> (accounting for pairwise spherical particle interaction) is related to the
noninteracting eigenstrain solution &*° as follows

@y =T:g* (11)
where the components of the isotropic tensor I' are defined as
Lo = 71000472040+ 048 ) (12)

in which (assuming the uniform “‘radical distribution function™)

_59 e L
y,—4ﬁ2{—2(1~vo)—5»0 PRy AL 2»0)} a3

L1, o0 _ PR —
n—2+8ﬂ2{11(1 o)+ 5% = 3 =+ 2to)} (14)

and
oc=2(5v0—])+10(1—v0)< fo Ko ) (15)
Ky —Ko Hy—Ho
B = 2(4—5vy) +15(1 —vy) —10 (16)
Uy —Ho

Following Ju and Chen (1994b), it can be shown that the averaged strain &, the uniform
remote strain ¢’ and the averaged eigenstrain &* are related by (dropping the ensemble
notation) :
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E=¢"+¢s:&* a7

where subscript 1 is omitted in &* and the components of the Eshelby tensor s (for a
spherical inclusion embedded in an isotropic linear elastic and infinite matrix) are

1 .
Skt = m {(5vo—1)0,0,+ (4 —5v4) (846, + 840 ,4) } (18)

Therefore, we arrive at
F=B.i=[[(—A—s+¢s-T)"']:¢ (19)
where the fourth-rank tensor A is defined as
A=[C,—C,] '-C, (20)

Employing the Eshelby’s equivalence principle, averaging quantities over the particle
domain ¥ and recalling eqn (19), we obtain the strain concentration factor tensor A, :

= —A:*=—-[A'Bl:g=A ¢ (21)
2.3. Effective elastic moduli of two-phase composites

Effective elastic moduli of two-phase composites containing randomly distributed
identical elastic spheres are readily available by substituting eqn (21) into (9):

Cy=Cy {I—¢T"(—A—s+¢s-T) '} (22)

which recovers eqn (53) in Ju and Chen (1994¢). Effective bulk modulus x, and shear
modulus g, can be explicitly evaluated as

B 30(1 —vg)p(3y, +275)
e = "”{1 T 3 28— 1001 + )3y, +2}’2)} @)

30(1 —vo)ys } (24)

He = “”{1 T 4@ 5v0)r

Equations (23) and (24) are valid for any arbitrary two-point isotropic “‘radial distribution
function. Moreover, the effective Young’s modulus E, and Poisson’s ratio v, of a par-
ticulate composite are obtained through the following relations

9 achx

I ol 25
* 3K+ ps 29)
3K — 2y

—_* 7 2
S (26)
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Fig. 1. The normalized effective Young’s modulus E,/E, vs the elastic contrast ratio E,/E, for elastic
composites containing dispersed harder spheres.

To illustrate effects of elastic inter-particle interaction, Figs 1 and 2 (harder and softer
inclusions, respectively) display the normalized effective Young’s moduli E,/E, vs the
“contrast ratios” F,/E,. The particle volume fraction ¢ is taken as 0.4 and the Poisson’s
ratio is assumed to be 0.23 for both constituent phases. It is evident from Fig. 1 (or Fig. 2)
that particle interactions significantly affect overall elastic moduli when the contrast ratios
are high (or low).

3. EFFECTIVE ELASTOPLASTIC BEHAVIOR OF PRDMCs

3.1. Overview

Let us consider a two-phase composite consisting of elastic spheres (with bulk and
shear moduli x, and y,, respectively) dispersed in an elastoplastic matrix (with elastic bulk
and shear moduli x, and g, respectively). For simplicity, the von Mises yield criterion with
an isotropic hardening law is assumed here. Extension of the present framework to general
yield criterion and general hardening law, however, is straightforward. Accordingly, at any
matrix material point, the stress ¢ and the equivalent plastic strain &” must satisfy the
following yield function :

F(e,&") = H(e)—K*(@") <0 27

in which K(&”) is the isotropic hardening function of the matrix-only material. Furthermore,
H(o) = 6:1,: 6 signifies the square of the deviatoric stress norm, where I, denotes the
deviatoric part of the fourth rank identity tensor L, i.e.,

L=I-31®1 (28)

in which 1 represents the second rank identity tensor.
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Fig. 2. The normalized effective Young’s modulus E_/E, vs the ¢lastic contrast ratio E,/E, for elastic
composites containing dispersed softer spheres.

According to the theory of continuum plasticity, the total strain & can be decomposed
into two parts:

e=¢+¢ (29)

where & denotes the elastic strain of the matrix and particles and & represents the stress-
free plastic strain in the plastic matrix only. In order to solve the elastoplastic response
exactly, the stress at any local point has to be solved and then used to determine the plastic
response through the local yield criterion for all possible configurations. This approach is
in general infeasible due to the complexity of statistical and microstructural information.
Therefore, a framework in which an ensemble averaged vyield criterion is constructed for
the entire composite is proposed. The methodology is generally parallel to the work of Ju
and Chen (1994a) in which only the first order effects are considered in the formulation of
effective plastic response. It is noted that, in Ju and Chen (1994a), the interactions among
particles are neglected in the process of collecting the perturbations of stresses at a local
matrix point for the purpose of predicting the plastic behavior although effective elastic
properties with pairwise inter-particle interactions are utilized. By contrast, a technique
which approximately accounts for the pairwise interaction among particles while collecting
the local stress perturbations in the plastic matrix is proposed in this section. As a result,
the present work renders a complete second order elastoplastic formulation for PRDMCs,
which incorporates inter-particle interactions in both the elastic and plastic responses.

3.2. A second-order formulation accounting for particle interaction effects

For simplicity, small strains are assumed and therefore the statistical microstructure
of particles embedded in a ductile matrix remains essentially the same. Hence, the micro-
structure 1s assumed to be statistically homogeneous and isotropic with a virtually constant
particle volume fraction during the deformation process. Furthermore, in what follows,
particles are considered as elastic spheres of uniform size.
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Following Ju and Chen (1994a), we denote by H(x| %) the square of the “‘current
stress norm” at the local point x, which determines the plastic strain in a PRDMC for a
given particle configuration 4. Since there is no plastic strain in the elastic particles, H(x | %)
can be written as

H(x|%) = o(x|9):1,:0(x|%), ifxisin the matrix; a0
0

s otherwise.

In addition, {H>,,(x) is defined as the ensemble average of H(x|%) over all possible
realizations where x is in the matrix phase. Let P(%) be the probability density function for
finding the particle configuration ¢ in the composite, {H),(x) can be obtained by inte-
grating H over all possible particle configurations ( for a point x in the matrix).

CHY W (X) = H“+f (H(x|%)— H°} P(%) d% 31)

<G
where H* is the square of the far-field stress norm in the matrix :
H =¢":1;:6° (32)

Moreover, the total stress at any point x in the matrix is the superposition of the far-
field stress 6 and the perturbed stress ¢” due to the presence of the particles:

o(x) = 6°+06'(x) (33)
in which ¢° and ¢’ are defined as

c’=C,:¢ (34)

o' (x) =C, :J G(x—x):e*(x)dx’ (3%

12

where ¢° is the elastic strain field induced by the far-field loading, ¢* denotes the elastic
eigenstrain in the particle phase, C, denotes the fourth rank elasticity tensor of the matrix,
and V is the statistically representative volume element (infinitely large compared with
inhomogeneities and without any prescribed displacement boundary conditions along infi-
nite exterior boundaries). It is noted that eqn (35) represents the method of Green’s
function. In indicial notation, the components of the fourth rank tensor G read

1
Gi/‘kl(x_x/) = wFi/k/(— 15,3v9,3,3—6vy, — 14 2vy, 1 —2v;) (36)
' 8r(1 —vo)r?

where r = x—x’, r = ||r|, and v, is the Poisson’s ratio of the matrix material. The com-
ponents of the fourth-rank tensor F—which depends on six scalar quantities B, B,, B;, B,
B, B¢—are defined by:

Fou(B,) = Binnmen+ By (6ynn+ 0ynny + 6 ymny + 0 4,0y,
+ B;0,mny+ Bydyunin;+ Bsd 0+ Be (6404 040 ) (37

with the unit normal vector n = r/r and index m = 1-6. It is observed that the above
expression of Green’s function is fundamentally different from the “modified Green’s
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tunction” considered by Mazilu (1972) and Kroner (1990) in which the prescribed dis-
placements or Green’s function values on the (finite or infinite) exterior boundaries are
homogeneous (zero).

The unknown elastic eigenstrain g*(x) within the particles can be solved by the integral
equation obtained on the basis of the celebrated Eshelby’s equivalence principle (Eshelby
(1957)), which guarantees that the equilibrium conditions in both the matrix and particle
phases and the boundary conditions at the particle-matrix interfaces are satisfied exactly.
The result is

—Ag*(x) = s"—i—J G(x—x"):e*(x)dx’ (38)

5

where the fourth-rank tensor A is defined in eqn (20).

The first-order approximation approach proposed in Ju and Chen (1994a) is based
upon the work of Eshelby (1957); i.e., the (elastic) eigenstrain for a single inclusion is
uniform for the interior points of an isolated (noninteracting) inclusion. Consequently, the
constant (elastic) eigenstrain can be moved out of the integration in eqn (35). Accordingly,
the perturbed stress for any matrix point x due to an isolated elastic spherical particle
centered at x,; becomes

a'(xIx)) = [Co G(x—x,)] : 8% (39)

where

G(x—x,) EJ G(x —x’) dx’ (40)

Q

for x ¢Q, in which Q, is the particle domain centered at x, ; or by the definition of eqn (37) :

G@r) = m(/ﬂil +p°H?) (41)

The components of H' and H? are given by
H/,(r) = SFi(—15,3v3,3—=6vy,— 14 2v4 1 —2v;) 42)
H;(r) = 3F,;,(35,—5,—5.—5,1,1) (43)

where r = X —x,, p = a/r, and a = the radius of a particle. Furthermore, the elastic non-
interacting eigenstrain £*’ (corresponding to the single inclusion problem) in eqn (39) is
given by (see, e.g., Ju and Chen (1994b, 1994c¢))

£ = —(A+s) g’ (44)

where s is Eshelby’s tensor for a spherical inclusion. In general, Eshelby’s tensor depends
on the Poisson’s ratio of the matrix and the shape of the ellipsoidal inclusion; see Mura
(1987) for details. Explicitly, the components of s for a spherical particle take the form
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—— Collection

Fig. 3. The local matrix point x,, collects stress perturbations due to surrounding particles without
near-field inter-particle interaction.

1 . . R
Sijkt = m {(5"0 - l)oilok/ +(4— 5"())(5ik();/ +51/0/‘k)} (45)

This process is illustrated in Fig. 3 which shows that at a matrix point x,,, the sur-
rounding particles are treated as isolated (noninteracting) sources of perturbation. A matrix
point simply collects the perturbation from all noninteracting particles one by one. In the
absence of exact solution for many particle interaction problems, this first-order approxi-
mation provides a simple way to account for the perturbations on a matrix point from the
particles. However, it is noted that the effective elastic moduli utilized in Ju and Chen
(1994a) is based on the second-order formulation where the inter-particle interactions are
accounted for through an approximation which collects the interactions between any pairs
of particles.

For a complete second-order formulation, any two-particle pair should interact first
and then the matrix point collects the perturbation based on the results of pairwise inter-
action. Unfortunately, the domain for centers of the interacting particle pair is complex.
Mathematically, for a matrix point x,,, the possible locations for the centers of a pair of
particles can be expressed as

{(xLx) X, =X >a, [X,—X| >a, |x,—Xx;|> 2a} (46)

which ensures that particles do not penetrate each other and the matrix point is not occupied
by any particle. This domain makes the analytical solution for the ensemble-average process
intractable. Consequently, approximate solutions which render analytical results are in
order.

In this paper, an approach motivated by the solution of the ensemble-volume averaged
eigenstrain for the inter-particle interaction problem is proposed; c.f. eqn (11) in Section
2.2. Since the particles under consideration are dispersed uniformly in the matrix, it is very
reasonable to infer that eqn (11) is the average eigenstrain for any particle in the composite.
Therefore, this eigenstrain can be used to calculate the ensemble-volume averaged per-
turbation to the matrix point (due to the existence and interaction of particles). As depicted
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-—— [nteraction
——— Collection

Fig. 4. The local matrix point x,, collects stress perturbations due to surrounding particles with
pairwise inter-particle interaction.

-—— [nteraction

Exclusion zone

Fig. 5. The exclusion zone for a local matrix point x,,, in which the center of a random particle
should not be located.

in Fig. 4, conceptually, any given particle interacts pairwise with all surrounding particles
in the proposed complete second-order formulation. The matrix point then collects the
perturbations from all interacting particles. Rigorously speaking, there exists a very small
(of the radius a) exclusion zone which excludes the possibility of having the center of any
particle located within the zone; see Fig. 5 for illustration. Since the exclusion zone is so
small and insignificant in comparison with the entire (infinitely large) statistical averaging
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domain, it will be neglected in our proposed treatment here. As a result, the proposed
approximate treatment renders an analytical and compact formulation which is attractive.

Furthermore, by using the ensemble-volume averaged eigenstrain given in eqn (11),
the stress perturbation in eqn (35) can be rephrased as

o' (x|x,) = [Co - G(x—x,)-T]:e* 47)

within the framework of the proposed second-order pairwise particle interaction during the
perturbation collection process at any matrix point. It is emphasized that the new second-
order approximation given in eqn (47) is fundamentally different from the previous first-
order approximation (Ju and Chen (1994a)) given in eqn (39). Clearly, if one totally neglects
the particle interaction effects, then I' in (47) would reduce to I and therefore (39) would
be recovered.

3.3. A second-order formulation of effective elastoplastic behavior of two-phase PRDMCs

Since a matrix point receives the perturbations from particles after the interaction
effects are accounted for, the ensembie-average stress norm for any matrix point x can be
evaluated by collecting the current stress norm perturbed due to a particle centered at x;
and averaging over all possible locations of x,. Mathematically, we write

{H>»,(x) = H”+f {H(x|x,)— H°} P(x,) dx, + *** (48)

[x—x,|>a

where P(x;) denotes the probability density function for finding a particle centered at x,.
In this paper, P(x,) is assumed to be statistically homogeneous, isotropic and uniform, and
takes the form P(x,) = N/V, where N is the total number of particles dispersed in a volume
V. Moreover, due to the assumption of statistical isotropy and uniformity, eqn (48) can be
recast into a more convenient form:

N
CHY,(x) = H+ —L-,J drj (Hor)—HY dA+ - (49)
r>a A(ry

where A(r) is a spherical surface of radius r.

With the help of the two identities eqns (28)—(29) in Ju and Chen (1994a) and the
perturbed stress given in eqn (47), we arrive at the ensemble-averaged current stress norm
at any matrix point:

(CHY,(xX) =6°:T: 6" (50)

Here the components of the positive definite fourth-rank tensor T are given by

T,j,'k[ = Tléijakl_‘}_ Tz (5ik5jl +5i15_/k) (51)
with
39,4+ 2y,)>
37, +2T, = 200(1 —2v0)2w¢ (52)
(Bo+2p)?
| Nie
T, = 3+(23—50v, +35v5)p¢ (53)

in which the particle volume fraction ¢ is defined as ¢ = 4na’/3 N/V. It should be noted
that the newly proposed second-order (interacting) expressions for T, and 7, in eqns (52)
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and (53) are very different from the first-order (noninteracting) expressions previously
given in eqns (32)—(33) in Ju and Chen (1994a).

It is interesting to observe that if one allows the volume fraction ¢ to go to zero in
eqns (52) and (53), the tensor T reduces to the fourth-rank deviatoric identity tensor I,
Consequently, the local stress norm defined in eqn (50) reduces to the second deviatoric
stress invariant J, which is employed to define the yield function for the classical von Mises
yield criterion.

The stress norm given in eqn (50) is in terms of the far-field stress °. Alternatively,
the ensemble-averaged current stress norm at a matrix point can be expressed in terms of
the macroscopic stress . Following Ju and Chen (1994a), the relation between the far-field
stress 6° and the macroscopic stress & is given by

o’ =P:¢ (54)
where the components of P read
Py = P10;01y4 P2(640;+ 040 ) (55)
with
3P, +2P, = TTad (56)
P, = b (57)
2(1+b9)

and the coefficients ¢ and 4 are given by :

3+ 2y,

a = 20(1 —2V0)m (58)
b=(T— 5v0)3;—2— (59)

It is noteworthy to mention that P in eqn (54) includes the elastic pairwise particle inter-
action effects and is employed in both the present formulation and the previous formulation
(Ju and Chen (1994a)). Nevertheless, the present complete second-order formulation also
considers the pairwise particle interaction effects in the collecting process of matrix stress
perturbations through eqns (47) and (52)—(53), whereas Ju and Chen (1994a) totally neglect
particle interaction effects in the perturbation collection process as evidenced by eqn (39)
herein and eqns (32)—(33) therein.

Combination of eqns (54) and (50) then leads to the alternative expression for the
ensemble-averaged current stress norm in a matrix point:

(H,x)=6:T:6 (60)
where the positive definite fourth-rank tensor T is defined as
T=P-T-P 61)
By carrying out the lengthy algebra, the components of T are explicitly given by
Tt = T10,00+ T2(640,+8:0,), (62)

where
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L 37,427,

3T, +27, = - (63)
(1+a¢)*
_ T,
= 64
(1+5b¢)? (&%)

It is observed again that the ensemble-averaged current stress norm in a matrix point given
in eqn (60) reduces to the classical J, stress invariant upon the substitution of ¢ = 0 into
eqns (63) and (64). In fact, the tensor T reduces to the fourth-rank deviatoric identity
tensor I, for ¢ = 0.

In what follows, we will present two alternative (and non-equivalent) formulations to
represent the ensemble-volume averaged yield function for a two-phase ductile matrix
composite.

(a) Formulation I: matrix average approach. The first formulation which we will
consider here is based on the concept that plastic yielding and plastic flow occur only in the
matrix material. Therefore, one can regard the two-phase composite as “plastic” overall
when the ensemble-volume averaged “‘current stress norm” in the matrix reaches a certain
level. From eqn (60), it is observed that the ensemble-averaged stress norm is uniform for
any point in the matrix. Accordingly, the effective (ensemble-volume averaged) yield cri-
terion can be proposed as

F, = T:6—K.) (65)

where &%, is the ensemble-volume averaged equivalent plastic strain of the matrix and
K, () denotes the isotropic hardening function for the matrix material. It should be noted
that the effective yield function is pressure dependent and not of the von Mises type any
more. Moreover, for simplicity, we assume that the overall flow rule for the matrix is
associative. Therefore, the averaged plastic strain rate of the matrix can be postulated as

=2T:6 (66)

Here, / denotes the plastic consistency parameter.
In addition, inspired by the structure of the micromechanically derived stress norm,
the averaged equivalent plastic strain rate for the matrix is defined as

(67)

£=20, F, <0, IF, =0, IF,=0 (68)

The Kuhn-Tucker conditions define the state of loading and unloading.

It is noted that the ensemble-volume averaged yield function in eqn (65), the averaged
plastic fiow rule in eqn (66), the equivalent plastic strain rate in eqn (67), and the Kuhn-
Tucker conditions in eqn (68) completely characterize the effective plasticity formulation
for the matrix material with any isotropic hardening function K, (&}). Straightforward
extension of the proposed model can be made to accommodate the kinematic hardening.
For simplicity, the following power-law type isotropic hardening function is utilized as an
example in the subsequent study :
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Ko@) = /o, +h(@)) (69)

where o, denotes the initial yield stress, and /4 and ¢ are the linear and the exponential
isotropic hardening parameters, respectively, of the matrix material.

In addition, the overall effective plastic strain rate & for the two-phase composite as a
whole can be related to the effective plastic strain rate &, for the matrix material as follows

# =(1—¢)B,: 8 (70)

Here, the volume-averaged stress concentration factor tensor B, takes the form (cf. Section
2)

B, =C,'A,-Cy' (70
in which

I "
=16, 14,

and A, = —A-B (as defined in eqn (21)).

A A, (72)

(b) Formulation 1I: overall two-phase average approach. Alternatively, the ensemble-
averaged ‘“‘current stress norm” for any point x in a two-phase particulate composite can
be defined as:

VHX) =(1—-¢)/6:T:¢ (73)

Consequently, the overall effective yield function for the two-phase PRDMC can be pro-
posed as

F=(1—¢)6:T:6 K@) (74)

with the isotropic hardening function K(&”) for the two-phase composite (different from
K, (%) in “Formulation I'"). Again, we note that the effective yield function is pressure
dependent and not of the von Mises type. Moreover, the effective ensemble-volume averaged
plastic strain rate for the PRDMC can be expressed as

OF .
& = la—_ =2(1—¢)°AT:6 (75)
06

Similar to ““Formulation I””, the effective equivalent plastic strain rate for the composite
is defined as

=/ T & =21-¢)1/36:T:6 (76)

The Kuhn-Tucker conditions can be expressed similar to “‘Formulation I”’. Furthermore,
the isotropic hardening function reads

K@) = /2 {o, +h(@)"} (77)

where ¢, denotes the initial yield stress, and /4 and ¢ signify the linear and exponential
isotropic hardening parameters, respectively, for the two-phase composite. It is emphasized
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that these parameters are at variance with those in “Formulation I”” in which only the
matrix average is considered.

4. INITIAL YIELD CRITERIA FOR INCOMPRESSIBLE DUCTILE MATRIX CONTAINING
MANY RANDOMLY DISPERSED IDENTICAL SPHERICAL VOIDS

To illustrate the capability of the proposed effective elastoplastic framework, we will
consider a special problem in this section—the prediction of initial yield stresses for an
elastically incompressible and perfectly plastic J,-type ductile matrix containing many
randomly dispersed identical spherical voids at various volume fractions. This special
problem has attracted interest from many researchers. For example, Gurson (1977) pre-
sented a study based on dilute and periodic array of noninteracting voids ; Tvergaard (1981,
1982) modified Gurson’s work (1977) to account for void interactions based on finite
element results (not micromechanics); Ponte Castaneda (1991) presented mathematical
upper bounds for porous ductile metals ; and Qiu and Weng (1993) derived a yield criterion
for ductile metals containing spheroidal inclusions through an energy approach.

In particular, the simplified problem under consideration is a metal material which is
elastically incompressible and perfectly plastic with the J,-flow (within the plastic domain),
and contains many randomly dispersed identical spherical voids. Clearly, there is nothing
inside the voids and hence the bulk and shear moduli are zero for voids. Therefore, it is
reasonable to employ “Formulation I”” and assume that the porous metal yields as the
ensemble-volume averaged stress norm of the matrix phase reaches a certain level. As a
consequence, the following yield criterion is employed (see eqn (65)):

F=6:T:6—

w3 | by

ol (78)

in which the averaged matrix yield radius is taken as K, = \/(h2/—3>)a_,‘.

Letting both the bulk and shear moduli of voids, x; and y,, vanish and the Poisson’s
ratio of the matrix, v,, equal 1/2, we obtaina = 3, f = —4.5, 1 —2v,/3a+2f = —1/20 and
the following expressions for this special problem

3T, +27, = %(3% +2y,)? (79)
4y3
T, =+ 3 ¢ (80)
and
342, = 1+5¢ (81)
V2 =3+tud (82)

with pairwise interaction effects accounted for.
Furthermore, the total averaged stress can be split into two parts:

Gy = §;+ 69, (83)
in which the hydrostatic stress & and deviatoric stress §;; are defined as
Gg= G0y (84)

1o .
3 0kks and 8, =0;—

With these definitions, the initial yield criterion given in eqn (78) can be recast into the
following form:
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for ¢=0.05 to $=0.50

1-0 L T T ¥ T
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Fig. 6. The normalized yield surfaces for void volume fractions ¢ varying from 0.05 to 0.5.

F=93T, +2T2)(§)“+4T2 (;) 220 (85)

¥ ¥y
where the definition of the deviatoric stress norm reads
§=./35,5, (86)
Itis noted that eqn (85) represents an initial yield surface at a specified void volume fraction
¢ in the &—35 space. The initial yield surfaces for void volume concentrations ¢ varying

from 0.05 to 0.5 are plotted in Fig. 6 which shows that the porous metal yields at a lower
level as the volume fraction of voids ¢ increases.

As discussed earlier, the yield function corresponding to the complete first-order

noninteracting formulation (inter-void interaction not considered at all) can be easily
obtained by the following operations

71 —0, and )’2—’% (87)

which transforms eqn (85) into

s 9% (oN [(5\ (=¢) _
F‘4(1+§¢)(q,,> +<a),> 1+2¢ =0 (88)

It is interesting to note that eqn (88) is identical to the initial yield function given in eqn
(27) in Qiu and Weng (1993) and Ponte Castaneda’s (1991) upper bound. That is, our
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Fig. 7. Comparison of normalized yield functions predicted by four different models for the void
volume fraction ¢ = 30%.

completely noninteracting solution in this case is actually the same as the upper bound
solution of Ponte Castaneda (1991) and the energy approach of Qiu and Weng (1993).

In order to further compare the initial yield stresses predicted by the proposed frame-
work and other methods, initial yield functions denoted by Fg; and Fj for the Gurson’s
(1977) and Tvergaard’s (1981) models, respectively, are taken from Qiu and Weng (1993) :

Fi = 2¢cosh<£)+ (i)z —(1+¢*) =0 (89)
26 o

y y

Fr = 2q1¢cosh<3q26>+ <i) —(1+¢;¢*) =0 (90)
20 )

¥ ¥

where ¢, = 1.5, ¢, = 1, and ¢; = ¢q7 = 2.25 are suggested by Tvergaard (1981). Initial yield
functions predicted by different methods for void volume fractions of 30% and 40% are
depicted in Figs 7 and 8, respectively. It is observed that void interactions result in lower
initial yield stresses and the difference between the interacting (complete second-order) and
the noninteracting (complete first-order) predictions increase as the void volume fraction
increases. Figures 7 and 8 also demonstrate that interactions among voids bring our
predicted initial yield stresses closer to those of Tvergaard’s (1981) modification.
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Fig. 8. Comparison of normalized yield functions predicted by four different models for the void
volume fraction ¢ = 40%.

In addition, if the applied loading is purely hydrostatic, the equations characterizing
the initial yield stresses for the four models under consideration are

5 2(1—¢p—= oY)
With interaction: — = (—P?—z‘;ﬂ o1)
9 3/e(l+5¢)
= (] —
No interaction: — = 20-9) 92)
o, 3\/5
a 1
Gurson : G—y = élng (93)
T a: L2 (94)
rgaard: — =Zln—
vergaa P n3¢

The curves corresponding to the initial yield stresses vs void volume fractions for the
four models are rendered in Fig. 9. Since the von Mises yield criterion is assumed for the
matrix material, all four curves approach infinity as the void volume fraction approaches
zero. When the void volume fraction is non-zero, the presence and interactions due to voids
perturb the stress field and hence the local stresses are no longer hydrostatic. The proposed
micromechanics-based models are capable of capturing these features.

Similarly, for purely deviatoric loading, the initial yield stresses are plotted in Fig. 10
based on the following four different predictions:
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Fig. 9. Comparison of normalized yield stresses vs void volume fractions predicted by four different
models under purely hydrostatic loading.
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-
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5
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S
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As can be seen from Fig. 10, the two curves corresponding to the proposed interacting
and non-interacting models are bounded between the curves corresponding to Gurson’s
and Tvergaard’s models. Again, the difference between the proposed interacting and non-
interacting models increases as ¢ increases.

5. UNIAXIAL ELASTOPLASTIC STRESS-STRAIN RELATIONSHIP FOR PRDMCs

From experimental evidence, it is observed that plastic properties (initial yield stresses
and plastic hardening constants) of a matrix material may change as the particle (or void)
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Fig. 10. Comparison of normalized yield stresses vs void volume fractions predicted by four different
models under purely deviatoric loading.

volume fraction ¢ increases. That is, the existence and interactions of particles affect the
plastic properties of the marrix material. The proposed “Formulation I"* (effective matrix
yield criterion) and the methods proposed by Gurson (1977), Ponte Castaneda (1991) and
Qiu and Weng (1993) cannot capture this feature. On the other hand, the proposed
“Formulation 11" (effective overall yield criterion) can characterize the changes in plastic
properties of the matrix and the composite due to the additional factor (1 — ¢) in eqn (74).

In order to illustrate the proposed micromechanics-based elastoplastic constitutive
model for PRDMCs, let us consider the example of uniaxial stress loadings in which the
applied macroscopic stress & can be written as

¢, =0, allotherd,=0. (99)

With the simple isotropic hardening law described by eqn (77), the overall yield function
reads

Fg.2") =(1—$)26:T:6—71 {0, +h(e")} (100)

Substituting eqn (99) into eqn (100), the effective yield function for the special case of
uniaxial loading is obtained as
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F(3,,2) =(1 =) (T, +2T2)63, —3 {a,+ h(&)7}* (101)

The macroscopic incremental plastic strain rate defined by eqn (75) becomes

T,+27, 0 0!
Ag =2(1—$)* Adé,,| O T, 0 (102)
0 0 T,

for any stress beyond the initial yielding. Similarly, the incremental equivalent plastic strain
can be written as

/2

Aer = 2(1—¢)> Adlay,| /AT, +27) (103)

3

From the linear theory of elasticity, the macroscopic incremental elastic strain takes the
form

Lo 0y
AF =0 —v, o0 |21 (104)
E,
0 0 —Vy

Furthermore, as given in eqn (29), the total incremental strain is the sum of the elastic
incremental strain and plastic incremental strain.

In the case of a monotonic uniaxial loading, the overall uniaxial stress—strain relation
can be obtained by integrating eqns (102) and (104) as follows:

Too 0 T 42T, 0 0}
=0 —v, 0 b“f” F2(1—¢)22a,,| 0 T, 0 (105)
0 0 —vd 0 0 T

where the positive parameter 1 = £ A/ is solved from the nonlinear equation obtained by
enforcing the plastic consistency condition £ = 0. Since only the uniaxial loading is under
consideration, the nonlinear equation reads (cf. eqn (103))

(1=¢)* (T, +2T>)a1, =5 {0, +h2(1 = ¢) i/ T2 +2To)l61, 11} (106)

To demonstrate the capability of the proposed framework, the predictions from our
“Formulation II"” with particle interaction effects are compared with the experimental data
reported by Yang er al. (1991). In their experiments, uniaxial stress—strain curves were
recorded for the Al/4Mg alloy reinforced with SiC particles. Large reinforcements tend to
crack, especially upon tensile loading, leading to a degradation in the strength of composites
(Yang et al., 1991). Hence, experimental results of composites obtained in compression
containing small particles provide better data for our model evaluation. Furthermore, the
aspect ratios of particulates reported in experimental data are less than 2 :1 and are not too
important for randomly oriented particulates. The elastic moduli £, = 75 GPaand v, = 0.33
are used for the matrix phase and the elastic constants for the SiC particles are F, = 420
GPa and v, = 0.17. It is noted that the analytical model employed by Yang ez al. (1991) to
describe the measured results is not the same as the isotropic hardening law we use here.
Therefore, the plastic parameters o,, # and g (of the matrix) for our effective plastic
hardening law were not reported in Yang er al. (1991).

In order to estimate the optimal values of plastic parameters for the simple hardening
law employed, data points are sampled from the experimental stress—strain curves and used
to obtain an optimal set of plastic parameters (o, 4, ¢) by minimizing the sum of the squares
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h = 382.09 MPa, q = 0252, c,=31.89 MPa
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Fig. 11. Overall uniaxial stress-strain relation of PRDMCs for various ¢ = 0, 0.17, 0.3 and 0.48.

The solid lines correspond to the present predictions and solid circles correspond to experimental
data of Yang et al. (1991).

of differences between the predicted and measured stresses at all data points. Let us assume
that N data points are sampled and o, denotes the experimental value of stress corresponding
to the strain ¢; at the sampling point. For each ¢, the stress predicted by our model with
the yet undetermined parameters o,, & and g is denoted by oF The objective of the
optimization is to minimize the sum of the squares of differences between the stress pre-
dictions and measurements. Symbolically, the least-square optimization function can be
written as (with o, 4 and ¢ positive)

N
min Y (0*—0,) (107)
i=1

Apparently, this is a nonlinear least-square constrained minimization problem. A number
of iterative numerical algorithms for searching the minimum of the foregoing objective
function are discussed in Luenberger (1984). The well known modified Levenberg—Mar-
quardt method is employed to search for the minimum in this study. See Levenberg (1944)
and Marquardt (1963) for more details, as well as Ju et al. (1987) and Simo et al. (1988)
for a summary of the algorithm. This method is basically a combination of the inverse-
Hessian method and the deepest descent method.

The optimal values of the plastic parameters (for the simple hardening law) are thus
obtained through the aforementioned minimization algorithm based on the data points
shown in Fig. 11 which displays four uniaxial stress—strain curves for ¢ =0, 0.17, 0.3 and
0.48. The values of 6,, h and g are fitted as o, = 31.89 MPa, h = 382.09 MPa, and ¢ = 0.252.
On the basis of these plastic constants, our “Formulation II” is exercised to render model
predictions for the four uniaxial tests, as shown in Fig. 11. From these comparisons, it is
seen that the proposed model performs very well for the matrix-only material and three
different volume fractions of particles.

6. CONCLUSION

A micromechanics-based framework is presented in this paper to predict effective
elastoplastic behavior of two-phase particle-reinforced ductile matrix composites containing
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many randomly dispersed elastic spherical inhomogeneities. A complete second-order for-
mulation is presented based on the probabilistic spatial distribution of spherical particles,
explicit pairwise particle interactions ( for both the elastic and plastic sub-problems), and
the ensemble-volume averaging procedure. As a result, two alternative “effective yield
functions” are derived micromechanically. The present work represents a significant
improvement over the recent work of Ju and Chen (1994a) which is based on the first-order
(noninteracting) stress perturbations on the matrix due to elastic particles. The derived
ensemble-averaged yield criterion together with the assumed overall associative plastic flow
rule and the hardening law then fuily characterize the elastoplastic behavior of PRDMCs
under any arbitrary three-dimensional loading/unloading histories. The present framework
is at variance with most existing works in the micromechanics literature of PRDMCs, which
are only applicable to monotonic, proportional loadings. In addition, the current work is
completely different from all existing effective medium methods developed for PRDMCs
since the former considers explicit inter-particle interactions and random particle dis-
tributions whereas the latter only considers one single particle embedded in an effective
medium (and never actually considers particle locations, spatial distributions or explicit
particle interactions).

The initial yield criteria for incompressible ductile matrix containing many identical
spherical voids proposed by the present framework are compared with those proposed by
Gurson (1977), Tvergaard (1981), Pont Castaneda (1991) and Qiu and Weng (1993). The
proposed method is also applied to the special case of uniaxial stress loadings to predict
the elastoplastic stress—strain responses. Moreover, the results are compared with the
experimental data reported by Yang ez al. (1991).

In a forthcoming paper, three-dimensional computational return mapping algorithms
and finite element implementation of the proposed formulations will be presented. Specifi-
cally, three-dimensional strain-driven return mapping (backward Euler) algorithms, con-
tinuum and consistent elastoplastic tangent moduli, extension to elasto-viscoplastic for-
mulation, and finite element examples will be systematically addressed.
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